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Innovators in pharma/biopharma seek 
to implement systems that support the 
discovery, development, and commercial 
launch of new products. Of particular 
interest are systems to support the 
implementation of continuous and 
mutually reinforcing digital-physical 
feedback loops. Here, digital tools and 
methods enhance physical processes, 
and feedback from these improved 
physical processes informs progressive 
digital advancements. 

In traditional, non-digitalised drug 
discovery Design, Make, Test, and Analyse 
(DMTA) cycles, each transition between stages 
often demands substantial human effort to 
transpose and translate information, bridging 
disparate systems and domain-specific 
knowledge. Inefficient management of these 
transitions can result in productivity loss, as 
practitioners must frequently consult subject 
matter experts to translate critical, context-
dependent information from design platforms 
to execution and analysis systems. This 
reliance on manual processes also increases 
the risk of transposition or transcription 
errors, where inaccurate transfer of numerical 
or textual data into digital interfaces may lead 
to failed experiments, flawed interpretations, 
or misguided decisions. 

Introducing modern AI-powered tools into 
the DMTA workflow not only streamlines these 
transitions but also enhances the analysis 
phase: advanced algorithms can rapidly 
process experimental data; uncover patterns 
that might escape human notice; and generate 
actionable insights. To ensure that learnings 
are preserved and accessible for future 
cycles, results from such AI-enabled analyses 
should be systematically documented within 
integrated digital repositories, allowing teams 
to memorialise findings, trace decisions, and 
enable continual refinement of the DMTA 
cycle. By minimising manual intervention 
and harnessing AI’s analytical capabilities, 
organisations foster a virtuous, resilient DMTA 
loop that seamlessly connects digital and 
physical domains.

Each transition within the non-digitalised 
DMTA cycle (from design to make, from make 
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to test, etc.) often requires significant human 
transposition and translation of information 
from systems to bridge the gap between 
different stages and domains of expertise. Put 
simply, avoiding these risks across the various 
DMTA transitions and from digital-to-physical 
steps allows for a virtuous DMTA cycle.  

Innovative DMTA Cycles in Drug Discovery: 
AI for Prediction & Orchestration
There are a variety of specific DMTA 
cyclesrequired for successful candidate 
nomination in drug discovery organisations.1  
The following summarises the dual-purpose 
of DMTA cycles during lead optimisation in 
drug discovery.
  

AI-Enabled Drug Design – The Design Step 
The design phase of the DMTA Cycle in drug 
discovery addresses two key questions:

What to Make? 
Virtuous approaches involve the use of 
generative AI tools to produce a structure-
activity relationship (SAR) map. As described in 
Figure 1, AI components can serve to recommend 

specific chemical structures and sequences 
which should exhibit suitable physicochemical 
and pharmacological properties for 
corresponding patient populations. The 
resultant recommendations are tested via 
execution of confirmatory assays using physical 
composition of matter whose identity matches 
the AI-recommended structures.

After gathering enough SAR data on a lead 
series, medicinal chemists focus on optimising 
potency, selectivity, and druggability. 
Modern drug discovery organisations have 
endeavoured to implement a range of well-
trained generative AI systems which produce 
reliably accurate sets of target compounds.4,5,6  

How to Make it? 
To confirm the success of sequential rounds 
of these generative AI outputs, medicinal 
chemists must design efficient synthetic 
routes for each of the target compounds. 
As described in the figure below, chemists 
will perform appropriate DMTA steps to 
ultimately produce test articles supporting 
confirmatory assay execution.

Figure 1. Machine-enabled virtuous design cycle in drug discovery. The drug design step involves the use of a structure-
activity relationship (SAR) Map (2) and a variational autoencoder to generate a set of target compounds. The synthesis 
design step involves the use of chemical reaction large language models (LLMs),3 retrosynthesis prediction tools, and 
material inventory web services to generate a set of reactions. Finally, the use of specialised planning applications supports 
the generation of a synthesis map with machine readable operations to support the transition to digitally supported and 

automated execution (make, in DMTA).
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Based on the similarity within each set of 
recommended structures, chemists seek to 
minimise the number of discrete planning and 
execution operations to produce test articles 
for the entire set. Consequently, chemists will 
identify common starting materials which 
can be used for execution of divergent-then-
parallel synthesis operations. This results in 
a smaller total number of reactions required 
to produce confirmatory test articles for all 
AI-recommended target compounds.

Achieving an ideal number of minimum 
operations for parallel test article production 
involves the use of well-trained retrosynthesis 
tools.7

Furthermore, medicinal chemists use the 
recommendations from these retrosynthesis 
tools to map to experiment execution systems, 
including to applications which generate 
machine-friendly master procedure lists.8 

These instructions include machine-encoded 
material dispenses, reaction operations, 
and sample preparation operations. These 
machine-executed operations enable far 
more efficient preparation and execution 
of Make tasks required for the preparation 
of test articles (when compared to manual 
operations).

Upon completed design, medicinal 
chemists can execute each unit operation, 

Figure 3. Machine-enabled virtuous “Test” cycle in drug discovery. For both product QC and bioassay, physical samples are 
labelled with human and machine-readable sample identifiers. Product registration generates a corporate identifier for 
each product structure. All assay results are related to these corporate identifiers (via the relationship between sample 

identifiers and corresponding assay results).

Figure 2. Machine-enabled virtuous “make” cycle in drug discovery. Leveraging the synthesis map and machine-readable instructions included in the execution plan, building blocks and 
other reaction materials are ordered and delivered in a reaction-friendly source plate format. The preparations map and corresponding operations are sent to synthesis, purification, and 
assay samples for execution. The digital representation of all assay samples (including applicable sample identifiers and related metadata) enables automated transition to the testing step.

AI-Enabled Synthesis Execution in Drug Discovery – The Make Step

from material dispensing, through reaction 
initiation, to final workup and sample 
preparation (Figure 2). In modern synthesis 
labs, the format of machine instructions 
must conform to the format requirements 
of each instrument supporting each unit 
operation. 

The output results in a set of test articles, 
labelled with appropriate machine-and-

human-legible material identifiers. These 
identifiers serve to associate test article 
information stored in appropriate software 
applications including output material 
identity, material metadata, container or 
vessel IDs.

Similarly to design, the testing of output 
materials (i.e., purified target compounds) 
serves a dual purpose: 

AI-Enabled Testing in Drug Discovery—The Test Step
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1.	 Subjecting materials to a wide range 
of project-applicable bioassays to 
confirm the performance of the target 
compounds as possible (future) drugs.

2.	 Identity and quantitative compositional 
testing to assure accurate SAR. 9  

As such, the modern DMTA cycle 
accounts for all applicable tests required 
to inform the overall lead optimisation 
effort. Samples of output materials from 
reaction execution steps are prepared, 
then labelled with system-derived sample 
identifiers, including:

•	 Reaction quality control samples – 
sample type (pre-process, in-process, 
and post-process), sample preparation 
information.

•	 Product registration samples – 
including chemical identity, purity, 
salt stoichiometry, and any applicable 
physical form information that is required 
for assessing bioassay results for SAR 
map.

•	 Test article samples – including sample 
concentration, assay role (e.g., control, 
standard, blank, replicate number, etc.),

•	 Predicted properties – intended to 
complement the measured bioassay and 
quality control (QC) results, enhancing 
the utility of the overall SAR Model:

The first analysis activities support the 
processing and interpretation of product QC 
and bioassay data. The variety of tools that 
support this primary analysis step has been 
described elsewhere.10,11,12

Modern drug discovery organisations 
intend to leverage the output of these 
analyses, by:

1.	 Aggregating processed data into a data 
warehouse,

2.	 Implementing a rigorously enforced 
controlled vocabulary for all bioassay 
and product QC Results, as well as 
associated metadata structured as 
JavaScript object notation (JSON) objects,

3.	 Relating the test results by applicable 

sample, corporate identifier, and in-
silico properties (generated for product 
registration).

Scientists can then update applicable SAR 
maps (Figure 1) based on the bioassay test 
results.  

Value Realisation of AI & Digitalised DMTA 
Implementing the modern DMTA cycle 

can improve productivity in drug discovery 
by supporting the generation of new target 
compounds and enabling an efficient, 
iterative process. The use of structured 
data, controlled vocabularies, and advanced 
analysis digital tools streamlines the drug 
discovery workflow and may accelerate the 
identification of potential therapeutics. 

Figure 4. Customary physicochemical, absorption, distribution, metabolism, and excretion (ADME), and toxicological 
descriptors generated upon product registration.

AI-Enabled Analysis in Drug Discovery – The Analyse Step

Figure 5. Upon completion of assay data analysis, results as JavaScript object notation (JSON) objects are used to re-train Generative AI Models, allowing for a virtuous next round of 
DMTA to start.
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Furthermore, the use of AI-driven tools 
now plays a transformative role in the swift 
construction and refinement of predictive 
models based on structure-activity 
relationships (SAR). By leveraging expansive 
datasets that capture both molecular 
structures and their corresponding biological 
activities, these tools employ machine 
learning algorithms capable of discerning 
complex, non-linear relationships within 
the data. Generative AI further augments 
this process by proposing novel chemical 
scaffolds tailored to desired activity profiles, 
while continuous feedback from experimental 
results enables iterative model retraining, 
ensuring accuracy and relevance. This rapid, 
automated integration of SAR insights not 
only accelerates hypothesis generation 
and compound prioritisation but also 
enhances the reliability of chemical structure 
predictions – empowering scientists to select 
and optimise candidates with unprecedented 
precision and speed.

This approach allows project teams to 
optimise lead series more rapidly and identify 
molecules that satisfy clinical candidacy 
requirements.

Conclusion 
Ultimately, the integration of AI into drug 
discovery projects markedly elevates both 
project success rates and operational 
efficiency. Now, organisations can more 
accurately identify promising drug candidates 
earlier and faster – effectively prioritising 
compounds that exhibit optimal safety and 
efficacy profiles. This targeted approach 
minimises downstream failures and leads to 
a significant reduction in the attrition rates 
that historically plague clinical development 
pipelines – a critical key performance indicator 
for the industry. With AI continuously refining 
predictive models through rapid analysis of 
diverse datasets and real-time incorporation 
of experimental feedback, resources are 
allocated more judiciously, timelines are 
shortened, and costly late-stage setbacks are 
avoided. As a result, drug discovery teams 
are empowered to advance higher-quality 
candidates into clinical trials with greater 
confidence, thereby increasing the likelihood 
of regulatory approval and market success.
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